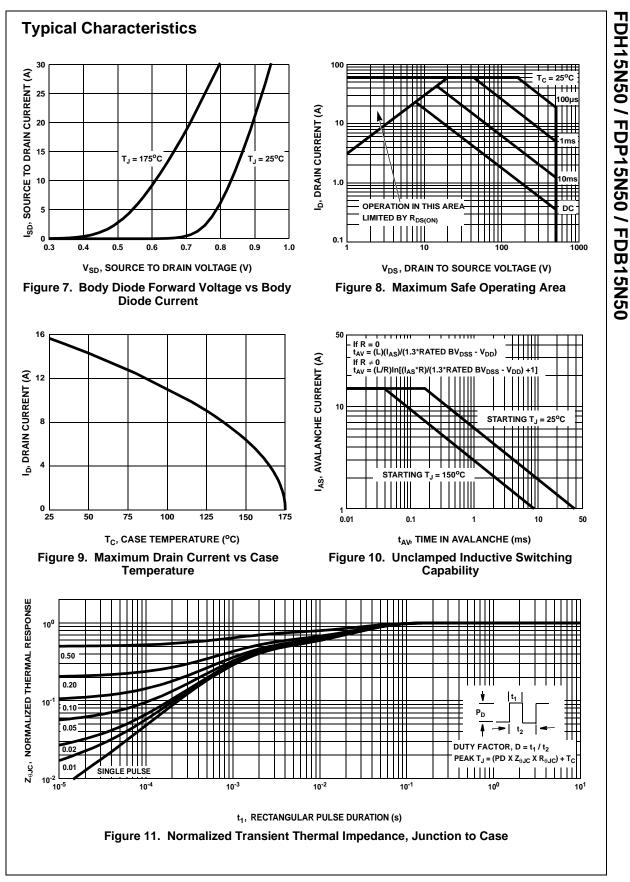
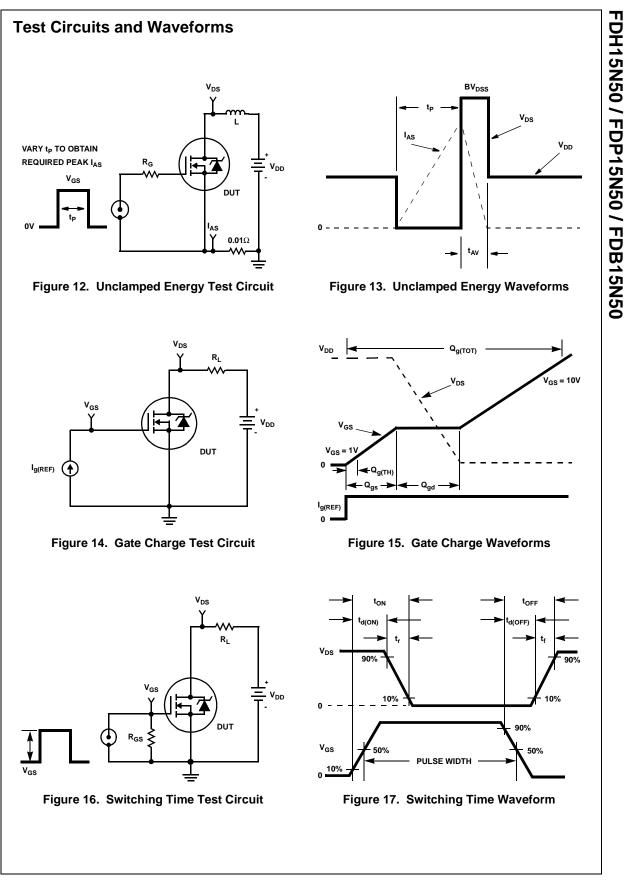

-	N50 / FDP15N50 / FD			
Applicatio	ns	Features		
Switch Mode Power Supplies(SMPS), such as PFC Boost		 Low Gate Charge Q_g results in Simple Drive Requirement 		
 Two-Switch Forward Converter Single Switch Forward Converter 		 Improved Gate, Avalanche and High Reapplied dv/dt Ruggedness 		
Flyback Co		 Reduced r_{DS(ON)} Reduced Miller Capacitance and Low Input Capacitance 		
Buck Conv				
High Speed Switching		Improved Switching Speed with Low EMI		
		 175°C Rated Junction Temperature 		
Package	SOURCE DRAIN GATE SOURCE TO-263AB FDB SERIES	DRAIN (FLANGE) DRAIN (FLANGE) Source DRAIN GATE		
	TO-247 FDH SERIES	TO-220AB FDP SERIES		
воттом) Absolute	TO-247 FDH SERIES Maximum Ratings T _C = 25°C u	FDP SERIES unless otherwise noted		
ВОТТОМ)	TO-247 FDH SERIES	FDP SERIES		


Thermal Characteristics

$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	0.50	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction to Ambient (TO-247)	40	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient (TO-220, TO-263)	62	°C/W


Device Marking		Device	Package	Reel Size	Таре	Width	Qua	Intity
FDH15N50 FDH15N50		TO-247	Tube		-	3	30	
FDP15N50 FDP15N50		TO-220	Tube	-		50		
FDB15	N50	FDB15N50	TO-263	330mm	24mm		800	
lectrica	I Char	acteristics T ₁ = 25°C (unless otherwis	e noted)				
Symbol		Parameter	Test Conditions		Min	Тур	Max	Units
tatics								
B _{VDSS}	Drain to S	ource Breakdown Voltage	I _D = 250μA,	$V_{GS} = 0V$	500	-	-	V
	Breakdow	n Voltage Temp. Coefficient	Reference t ID = 1mA	o 25 ^o C,	-	0.58	-	V/°C
r _{DS(ON)}	Drain to S	ource On-Resistance	V _{GS} = 10V, I	_D = 7.5A	-	0.33	0.38	Ω
V _{GS(th)}	Gate Thre	shold Voltage	$V_{DS} = V_{GS},$	_D = 250µA	2.0	3.4	4.0	V
	Zoro Cat	Voltago Droin Current	V _{DS} = 500V		-	-	25	
IDSS	Zero Gate	Voltage Drain Current	$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μA
I _{GSS}	Gate to S	ource Leakage Current	$V_{GS} = \pm 30V$	·	-	-	±100	nA
)ynamics				_				•
9 _{fs}	Forward 7	ransconductance	V _{DD} = 10V,	V _{DD} = 10V, I _D = 7.5A		-	-	S
Q _{g(TOT)}	Total Gate	tal Gate Charge at 10V V _{GS} = 10V,		-	33	41	nC	
Q _{gs}	Gate to S	ource Gate Charge	$V_{DS} = 400V,$		-	7.2	10	nC
Q _{gd}	Gate to D	rain "Miller" Charge	I _D = 15A		-	12	16	nC
t _{d(ON)}	Turn-On [Delay Time	V _{DD} = 250V	$V_{PP} = 250 V_{e}$		9	-	ns
t _r	Rise Time)	I _D = 15A, R _G = 6.2Ω,		-	5.4	-	ns
t _{d(OFF)}	Turn-Off [Delay Time			-	26	-	ns
t _f	Fall Time		$R_D = 17\Omega$		-	5	-	ns
CISS	Input Cap	acitance)/ 25)/			1850	-	pF
C _{OSS}	Output Capacitance			V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		230	-	pF
C _{RSS}	Reverse ⁻	Fransfer Capacitance	1 - 110112		-	16	-	pF
valanche	Charac	teristics						
E _{AS}	Single Pu	lse Avalanche Energy ²	ergy ²		760	-	-	mJ
I _{AR}	Avalanch	e Current			-	-	15	Α
Drain-Sou	rce Dioc	le Characteristics						
۱ _S	Continuou (Body Dic	us Source Current ide)	MOSFET symbol showing the integral reverse p-n junction diode.		-	-	15	Α
I _{SM}		ource Current ¹			-	-	60	А
V_{SD}	Source to	Drain Diode Voltage	I _{SD} = 15A		-	0.86	1.2	V
t _{rr}	Reverse I	Recovery Time		i _{SD} /dt = 100A/µs	-	470	730	ns
	Reverse I	Recovered Charge	-	-	-	5	6.6	μC
Q _{RR} lotes:	Reverse I		I _{SD} = 15A, d	$i_{SD}/dt = 100A/\mu s$				

©2003 Fairchild Semiconductor Corporation

©2003 Fairchild Semiconductor Corporation

©2003 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT™	ImpliedDisconnect [™]		SPM™
ActiveArray™	FACT Quiet Series™	ISOPLANAR™	POP™	Stealth™
Bottomless™	FAST [®]	LittleFET™	Power247™	SuperSOT™-3
CoolFET™	FASTr™	MicroFET™	PowerTrench®	SuperSOT™-6
CROSSVOLT™	FRFET™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic [®]
E ² CMOS™	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
EnSigna™	l ² C™	OCX™	RapidConfigure™	UHC™
Across the board	. Around the world.™	OCXPro™	RapidConnect™	UltraFET [®]
The Power Franchise™		OPTOLOGIC [®]	SILENT SWITCHER [®]	VCX™
Programmable A	ctive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.